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� Starting biomass and peak pyrolysis
temperature jointly affect biochar
properties.
� 19 different physico-chemical

properties of biochar were properly
modeled by GLM.
� Models reveal complex relationships

between biochar properties and
predictors.
� Ubiquitous non-Gaussian and non-

linear attributes were accounted for
in GLMs.
� Proposed correlation networks,

models and web-tool can be used to
engineer biochar.
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This study underpins quantitative relationships that account for the combined effects that starting bio-
mass and peak pyrolysis temperature have on physico-chemical properties of biochar. Meta-data was
assembled from published data of diverse biochar samples (n = 102) to (i) obtain networks of intercorre-
lated properties and (ii) derive models that predict biochar properties. Assembled correlation networks
provide a qualitative overview of the combinations of biochar properties likely to occur in a sample. Gen-
eralized Linear Models are constructed to account for situations of varying complexity, including: depen-
dence of biochar properties on single or multiple predictor variables, where dependence on multiple
variables can have additive and/or interactive effects; non-linear relation between the response and pre-
dictors; and non-Gaussian data distributions. The web-tool Biochar Engineering implements the derived
models to maximize their utility and distribution. Provided examples illustrate the practical use of the
networks, models and web-tool to engineer biochars with prescribed properties desirable for hypo-
thetical scenarios.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Biochar, the product of biomass thermochemical conversion in
an oxygen depleted environment, has gained increasing recogni-
tion as a modernized version of an ancient Amerindian soil man-
agement practice, with at times wide-ranging agronomic and
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Table 1
Benefits from specific biochar properties.

Biochar property Agronomic and environmental benefits

BulkD [Mg m�3] Low bulk density biochar can reduce the density
of compacted soils, thereby improving root
penetration (Atkinson et al., 2010; Ennis et al.,
2011; Novak et al., 2013), water drainage and
aeration (Joseph et al., 2009; Laird et al., 2010).
The latter may mitigate green house gas emis-
sions (Karhu et al., 2011).

SSA(N2), SSA(CO2)
[m2 g�1]

High nanopore and micropore specific surface
area, respectively, may increase the sorptive
affinity of organic compounds to biochars
(Cornelissen et al., 2005; Beesley et al., 2011), and
improve water holding capacity (Karhu et al.,
2011).

Yield [%] Yield reflects the quantity of biochar material
produced from the pyrolysis process.

EC [mS m�1] Electrical conductivity indicates the quantity of
salt contained in the biochar. High EC can
stabilize soil structure (Joseph et al., 2009;
Hossain et al., 2011).

CEC [Av (mmolc kg�1)] Increased cation exchange capacity can improve
the soil’s ability to hold and exchange cations
(Chapman, 1965; Glaser et al., 2002).

pHw [�] Soil solution pH directly affects soil surface
charge, which determines the type of
exchangeable nutrients and mineral ions it
attracts (Mukherjee et al., 2011). Additionally, the
buffering capacity of biochar can neutralize acidic
soils, redude aluminum toxicity and change the
soil microbial community structure (Abe, 1988;
Lehmann et al., 2011).

Ash [%] Ash may improve the sorption capacity of biochar
for organic compounds and metals (Cao et al.,
2011).

MatVol [%] Volatile matter affects biochar longevity in soil
(Lehmann et al., 2011; Enders et al., 2012).
Residual volatiles can also impact organic sub-
stance sorption by blocking pores and changing
surface chemical interactions (Sander and
Pignatello, 2005; Zhu et al., 2005; Novak et al.,
2013).

C [mg g�1] Total carbon in organic matter benefits the soil.
N [mg g�1] Total nitrogen in the biochar supplies a

macronutrient, but its availability is limited.
Biochar may strongly sorb ammonia and act as a
nitrogen-rich soil amendment (Spokas et al.,
2012b).

C:N [�] Carbon to nitrogen ratio influences the rate of
decomposition of organic matter and release of
soil nitrogen (Novak et al., 2009).

FixedC [%] Fixed carbon is non-labile and therefore is a
property attributed to biochar stability
(Keiluweit et al., 2010; Enders et al., 2012;
Rajkovich et al., 2012).

P, S [Total (mg kg�1)] Macronutrients provided by biochar, which can
improve soil fertility.

Ca, K, Mg, Na, Fe, Mn, Zn
[Total (mg kg�1)]

Micronutrients provided by biochar, which can
improve soil fertility.

Notes: BulkD = bulk density, SSA = specific surface area, EC = electrical conduc-
tivity, CEC = cation exchange capacity, MatVol = volatile matter, FixedC = fixed
carbon.
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environmental gains (Lehmann et al., 2003; Atkinson et al., 2010;
Novak et al., 2013). Some of the most commonly acclaimed bene-
fits of biochar application to soils include: increased long-term C
storage in soils (Atkinson et al., 2010; Joseph et al., 2010; Cross
and Sohi, 2011; Ennis et al., 2011; Karhu et al., 2011; Novak
et al., 2013), restored soil fertility (Glaser et al., 2002; Lehmann
et al., 2003; Gaskin et al., 2008; Novak et al., 2009; Atkinson
et al., 2010; Laird et al., 2010; Beesley et al., 2011; Lehmann
et al., 2011; Enders et al., 2012; Spokas et al., 2012b; Novak
et al., 2013), improved soil physical properties (Novak et al.,
2009; Joseph et al., 2010; Ennis et al., 2011; Karhu et al., 2011;
Lehmann et al., 2011; Novak et al., 2013), boosted crop yield and
nutrition (Novak et al., 2009; Major et al., 2010; Lehmann et al.,
2011; Rajkovich et al., 2012; Spokas et al., 2012a; Novak et al.,
2013), enhanced retention of environmental contaminants
(Cornelissen et al., 2005; Loganathan et al., 2009; Cao and Harris,
2010; Beesley et al., 2011), and reduced N-emission and leaching
(Spokas et al., 2012b; Novak et al., 2013). Examples of the specific
biochar properties responsible for these benefits are summarized
in Table 1.

Biochar quality can be highly variable, and its performance as
an amendment – whether beneficial or detrimental – is often
found to depend heavily on its intrinsic properties and the par-
ticular soil it is added to (Lehmann et al., 2003; Novak et al.,
2009; Atkinson et al., 2010; Major et al., 2010; Lehmann et al.,
2011; Spokas et al., 2012a). As has been previously concluded, bio-
char application to soil is not a ‘‘one size fits all’’ paradigm (Spokas
et al., 2012a; Novak et al., 2013). Consequently, detailed knowl-
edge of the biochar properties and the specific soil deficiencies to
be remediated is critical to maximize the possible benefits and
minimize undesired effects of its use as a soil amendment. While
soil deficiencies must be identified on a site-by-site basis, it is con-
ceivable that biochar properties can be engineered through the
manipulation of pyrolysis production parameters and proper selec-
tion of parent biomass type (Zhao et al., 2013). The capacity to pro-
duce biochars with consistent and predictable properties will, first,
enable efficient matching of biochars to soils, and second, facilitate
the deployment of this soil management strategy at large and com-
mercial scales. Although the properties and effects of biochar sam-
ples produced from a variety of methods and starting biomasses
have been intensively studied, as yet, the analytical techniques
for characterization and effect quantification are not standardized.
This creates a challenge when comparing biochar properties and
effects across studies. At the same time, making such comparisons
is imperative to gain a comprehensive understanding of alterable
biochar properties.

The prevailing hypothesis in the literature is that the selection
of peak pyrolysis temperature and parent biomass – as two key
production variables – fundamentally affects resulting biochar
properties. Identification of relationships between production vari-
ables and biochar properties has been pursued by many investiga-
tors, but has been limited to the small number of samples
produced and analyzed for each study (e.g., Karaosmanoğlu et al.,
2000; Zhu et al., 2005; Gaskin et al., 2008; Nguyen and Lehmann,
2009; Cao and Harris, 2010; Joseph et al., 2010; Keiluweit et al.,
2010; Cao et al., 2011; Cross and Sohi, 2011; Hossain et al., 2011;
Mukherjee et al., 2011; Enders et al., 2012; Rajkovich et al.,
2012; Zhao et al., 2013), with few reports combining measure-
ments from more than one source (Cordero et al., 2001; Glaser
et al., 2002; Atkinson et al., 2010; Ennis et al., 2011; Spokas
et al., 2012a). The knowledge gained from the above studies does
not provide a quantitative understanding of the relationships
between production variables and biochar properties. The short-
comings responsible for such lack of systematic insight include:
(i) reported trends that are primarily qualitative with respect to
the independent effect of parent biomass or temperature (e.g.,
decrease in labile carbon with increasing pyrolysis temperature
for selected samples (Cross and Sohi, 2011)), (ii) trends that are
often in conflict with similar samples of other studies (e.g., positive
effect (Rajkovich et al., 2012) vs. negligible effect (Nguyen and
Lehmann, 2009) of temperature on pH for oak biochar), and (iii)
correlations that are not convincing (e.g., correlation r = 0.5
between volatile matter content and microporous surface area
(Mukherjee et al., 2011)). A recent study by Zhao et al., 2013
reports, for the first time, a quantitative evaluation of the indi-
vidual influence of feedstock source and production temperature
on various biochar properties. The authors classified a variety of
physical and chemical biochar properties as predominantly
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controlled by either feedstock or temperature. While this initial
knowledge is critical to guide the production of designed biochar,
it falls short when the influence of both parameters is significant,
as is the case with most properties of interest.

The present study advances the quantitative approach one step
further by constructing relationships that capture the combined
influence that starting biomass and temperature has on various
biochar physico-chemical properties of agronomic and environ-
mental interest. The first objective was to gather comparable data
from various sources to create an unbiased meta-data set on which
to perform statistical analyses. The second objective was to identi-
fy groups of inter-correlated properties to gain an insight into how
individual properties may be affected when others are manipulat-
ed. The third objective was to underpin quantitative relationships
between production variables and the measured properties of bio-
char in the meta-data, as listed in Table 1. The fourth objective was
to implement the identified relationships in a simple-to-use web
application, which provides an estimate of the expected properties
of biochar when produced under a user-defined set of production
variables. The overarching goal is to improve the efficiency in pro-
duction of biochar with engineered properties so that it can best
match the needs of a particular soil or crop system.
2. Methods

2.1. Assembly of meta-data library

A library of meta-data (summarized in Table A.1) was created
using information from 102 different biochar samples measured
for 22 unique physical and chemical characteristics. To build the
library, data were gathered from published studies that: (i) used
slow-pyrolysis biochar, (ii) reported the production details, and
(iii) extensively characterized the physical and chemical properties
of biochar materials (Karaosmanoğlu et al., 2000; Cordero et al.,
2001; Gaskin et al., 2008; Keiluweit et al., 2010; Mukherjee et al.,
2011; Enders et al., 2012; Rajkovich et al., 2012). Production vari-
able details for each study are summarized in Table 2. These studies
were chosen because the analytical methods for characterization
were similar, thus permitting the comparison of data across studies.
Based on these selection criteria, we focused our efforts to test the
effects of starting biomass and peak pyrolysis temperature on each
of the 22 biochar characteristics. It is important to note that
although additional pyrolysis production parameters varied among
the samples in our meta-data, the distribution of these variables
was too skewed or not documented in a sufficient number of stud-
ies to adequately test their effect.
2.2. Correlation matrix and networks

For the first statistical analysis, a correlation matrix was built to
identify the links among the physical and chemical properties of
biochar in this study (see Fig. 1). To construct the correlation matrix,
the Pearson product-moment correlation coefficient between each
pair of variables was determined using all complete pairs of obser-
vations on those variables. Significance of the relationships was
simultaneously determined with a confidence interval of 0.95.
Absolute value of correlation and its significance (p-values denoted
by star symbols) are reported in the matrix. A threshold for the
absolute value of correlation coefficient, jrj, of 0.75 was arbitrarily
chosen to resolve sufficiently strong relationships. The correlation
matrix gives a great deal of information that is not always easy to
interpret. In order to visualize the most relevant details, we identi-
fied the significant and strong enough correlated pairs of properties,
and made a network graph representation (see Fig. 2). The nodes of
the graph represent the biochar properties and edges are drawn
between pairs of nodes if the properties are strongly correlated
and the relationship is significant (jrjP 0:75 and p-value
< 0.001). Edge thickness in the network graph is proportional to
the correlation strength between node pairs. From the correlation
networks it is further possible to classify biochar properties into
interdependent groups or as independent properties. Alternative
network graph representations built with different correlation coef-
ficient thresholds can be obtained from the web-tool, as described
in subsequent sections. The authors note that the only difference
between network representations of different correlation coeffi-
cient thresholds is the number of connections which are displayed,
meaning that weak correlations are filtered out in order to ease ana-
lysis of network properties that are generally obscured by the com-
plexity of the complete (i.e., unfiltered) network.

2.3. Generalized Linear Model analyses

To accommodate for the different relationships between biochar
properties and production variables, a Generalized Linear Models
(GLMs) approach was used. GLMs are an extension of ordinary lin-
ear regression analysis that account for non-Gaussian distributions
of the response as well as non-linear dependencies between
explanatory and response variables (the interested readers are
referred to Myers et al., 2010 for greater details). When there is a
non-linear relation between the response and predictor, GLMs can
be used by applying a transformation to the response variable
before fitting the model. The other possibility consists in modeling
the non-linear dependence by means of a non-linear link function.

2.3.1. GLM candidates
The following steps have been used to build GLMs for the bio-

char system:

(a) In this study, the response variables are the biochar proper-
ties listed in Table 1. The predictors correspond to the pro-
duction variables which are parameterized by the pyrolysis
peak temperature (T: 250–650 �C) and details about the
starting biomass, which can be introduced in the model by
two categorical variables. A first variable denoted as biomass
(B) contains the categories: bull manure, corn, dairy manure,
digested dairy manure, food waste, grass, hazelnut, oak,
paper waste, pine, poultry litter, and rapeseed. The second
variable corresponds to a nested category for B referred to
as feedstock class (F), and contains the categories: animal
waste, plant material, or combination. Variable T was intro-
duced as covariate in the model, while B and F were intro-
duced as factors.

(b) Under GLMs, the response is assumed to follow a probability
density function pðRespjXÞ belonging to the exponential
family (Myers et al., 2010). In this study the Gaussian and
Gamma distributions were initially investigated. However,
the Gamma distribution did not show a good fit for any of
the response variables and therefore it will not be presented
here. Instead, where the response variables did not meet the
criteria for a Gaussian distribution, transformation of the
response using the Log transform and the Box-Cox transform
was applied. As a result, the data distributions we have inves-
tigated include (untransformed) Gaussian and two power-
transformations for non-Gaussian data (Log transformed
and Box-Cox transformed) to describe the biochar system.

(c) A linear relation between the response (biochar property)
and the predictors (production variables) of the form
gðEðyiÞÞ ¼ bi0 þ
XNc

j¼1

bi;jxi;j þ
XNc

j¼1

XNc

k¼1

bi;jkxi;jxi;k; ð1Þ



Table 2
Production details of meta-data.

Biomass Feedstock Milling size
(lm)

Moisture (%) Reactor type Feed
capacity

Oxygen
limitation

Heat rate Holding time
(min)

Peak temp. (�C) References

Bull manure Animal 149–850 10 Kiln 3000 g N2 3 �C 15–
20 min�1

80–90 300,350,400,450,500,550,600 Enders et al. (2012)

Corn Plant 149–850 10 Kiln 3000 g N2 3 �C 15–
20 min�1

80–90 300,350,400,450,500,550,600 Rajkovich et al. (2012) and Enders
et al. (2012)

Dairy manure Animal 149–850 10 Kiln 3000 g N2 3 �C 15–
20 min�1

80–90 300,350,400,450,500,550,600 Enders et al. (2012)

Digested dairy
manure

Animal 149–850 10 Kiln 3000 g N2 3 �C 15–
20 min�1

80–90 300,350,400,450,500,550,600 Rajkovich et al. (2012) and Enders
et al. (2012)

Food waste Combo 149–850 10 Kiln 3000 g N2 3 �C 15–
20 min�1

80–90 300,400,500,600 Rajkovich et al. (2012)

Grass (Tall fescue) Plant < 1500 na Closed container
muffle furnace

na Yesa na 60 300,400,500,600 Keiluweit et al. (2010)

Grass (Tripsacum
floridanum)

Plant 50,000 (5d drying at
60 �C)

Batch pyrolysis oven 4749 cm3 N2 26 �C 60 250,400,650 Mukherjee et al. (2011)

Hazelnut Plant 149–850 10 Kiln 3000 g N2 3 �C 15–
20 min�1

80–90 300,350,400,450,500,550,600 Rajkovich et al. (2012) and Enders
et al. (2012)

Oak (Quercus
rotundifolia)

Plant 177–250 na Horizontal tube
furnace

na N2 Continuous
flow

120 300,350,400,450,500,550,600 Cordero et al. (2001)

Oak (Quercus lobata) Plant 50,000 (5d drying at
60 �C)

Batch pyrolysis oven 4749 cm3 N2 26 �C 60 250,400,650 Mukherjee et al. (2011)

Oak Plant 149–850 10 Kiln 3000 g N2 3 �C 15–
20 min�1

80–90 300,350,400,450,500,550,600 Rajkovich et al. (2012) and Enders
et al. (2012)

Paper waste Plant 149–850 10 Kiln 3000 g N2 3 �C 15–
20 min�1

80–90 300,400,500,600 Rajkovich et al. (2012)

Pine (Pinus
halepensis)

Plant 177–250 na Horizontal tube
furnace

na N2 continuous
flow

120 300,350,400,450,500,550,600 Cordero et al. (2001)

Pine (Pinus
ponderosa)

Plant < 1500 na Closed container
muffle furnace

na Yesa na 60 300,400,500,600 Keiluweit et al. (2010)

Pine (Pinus taeda) Plant na na Batch pyrolysis unit na N2 na na 400,500 Gaskin et al. (2008)
Pine (Pinus taeda) Plant 50,000 (5d drying at

60 �C)
Batch pyrolysis oven 4749 cm3 N2 26 �C 60 250,400,650 Mukherjee et al. (2011)

Pine Plant 149–850 10 Kiln 3000 g N2 3 �C 15–
20 min�1

80–90 300,350,400,450,500,550,600 Rajkovich et al. (2012) and Enders
et al. (2012)

Poultry litter Animal na na Batch pyrolysis unit na N2 na na 400,500 Gaskin et al. (2008)
Poultry litter Animal 149–850 10 Kiln 3000 g N2 3 �C 15–

20 min�1
80–90 300,350,400,450,500,550,600 Rajkovich et al. (2012) and Enders

et al. (2012)
Rapeseed Plant <1000 12.6 Tubular reactor 30 g N2 5 �C min�1 30 400,500,600 Karaosmanoğlu et al. (2000)

a Details not specified.
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Fig. 1. Correlation matrix of biochar properties. The diagonal indicates the biochar properties. The upper triangular sector shows the absolute value of correlation between
pairs of properties and significance symbol (defined in the legend). Highly correlated pairs (with jrjP 0:75) are highlighted in bold font. The lower triangular sector displays
the respective bivariate scatterplots with a trend line.

Fig. 2. Correlation networks of inter-correlated biochar properties (jrjP 0:75).
Nodes represent individual biochar properties, and edges indicate whether the
correlation is positive (solid line) or negative (dashed line). Line thickness is
proportional to the correlation strength.
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is assumed, where EðyiÞ signifies the expected values of the
i-th response, Nc is the number of predictors, xi;j are the
values of the predictor variables (dummy values are used
for categorical predictors), and gð�Þ is the link function. In par-
ticular, the link functions identity and log were explored for
all models. The b quantities are unknown parameters to be
estimated by maximum-likelihood. The first contribution,
bi0, is referred to as the intercept. The parameters bi;j quantify
the effects of individual variables, while the parameters bi;jk

account for combined effects associated with interacting
pairs of variables. The predictor variables were assessed in
all possible individual (B, T, F) and interacting (B:T, F:T) com-
binations. That is, possible formulas relating biochar property
(Resp) to temperature (T). starting biomass (B) and feedstock
class (F) include: Resp � T , Resp � B, Resp � Bþ T , Resp
� B : T , Resp � Bþ B : T , Resp � F, Resp � F þ T , Resp
� F : T , Resp � F þ F : T .
With all the available options, 54 iterations of GLM models
(covering 9 formula possibilities, 3 data transformations, and 2 link
functions) were tested to describe each biochar property. These
options provide the extra flexibility in the model to describe the
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biochar system with alternative data transformations and link
functions that are not included in ordinary linear regression mod-
els, which are limited to Gaussian pðRespjXÞ and identity gð�Þ.
2.3.2. ‘‘Best’’ model selection and goodness-of-fit tests
The process of ‘‘best’’ model selection requires, first, grouping

the GLMs by initial data transformation type: untransformed, Log
transformed, and Box-Cox transformed. Quantitative diagnostics
were determined for each model, including Akaike Information Cri-
terion (AIC) as an estimate of the quality of a model relative to the
collection of candidate models for the data, Shapiro–Wilk (SW) test
to determine whether the sample came from a Normally distribut-
ed population, and Durbin–Watson (DW) test to detect autocorre-
lation in the residuals. Within each transformation group, the
different model formulations and the different link functions were
ranked by the individual model’s AIC score. The model with the
lowest AIC was then selected as the top candidate model in its
group. This step reduces the list of candidate models from 54 to
3, one for each transformation type.

In the second step, the three candidates belonging to each data
transformation group were compared against each other. To do
this, diagnostic plots were generated for each candidate model,
including: (i) residual plots to illustrate the distance of the data
points from the fitted regression, (ii) Normal Quantile–Quantile
plots to graphically compare the probability distribution of the
data against a theoretical Normal distribution, (iii) square root of
standardized residual plots to check for heterogeneity of the vari-
ance, and (iv) leverage with Cook’s distance to identify outliers and
points with disproportionate influence on regression estimates.
Outlier points were removed from a data set only when the Cook’s
distance of a datum exceeded 0.5 and re-evaluation of the model
did not result in new points with large Cook’s distance. Perfor-
mance of the candidate models for SW and DW tests, together with
the diagnostic plots were used as goodness-of-fit tests to evaluate
the assumptions of the models.

The following criteria were used to assess model adequacy. The
residual plot was checked for a random scatter of points producing
a flat-shapped trend to verify that the appropriate type of model
was fitted. The Normal Quantile–Quantile plot was assessed for
deviation from the theoretical distribution to confirm Normality
in the residuals. The standardized residual plot was examined for
a symmetric scatter and flat-shapped trend to test the homogene-
ity of the variance. The leverage plot was inspected for influential
outliers when points fell far from the centroid or were isolated.
SW quantitatively tested for assumptions of Normality (p-val-
ue P 0.05), while DW evaluated the level of uncorrelation of the
residuals (p-value P 0.05). The ‘‘best’’ model was finally selected
as that which satisfied the most criteria, preferring the simpler
data transformation if diagnostics were comparable. All computa-
tions were performed using RStudio, version 0.96.331.
1 While SSA(CO2) is not directly linked to Ash, high SSA(CO2) implies high C and
FixedC which, in turn, are negatively correlated with Ash. In other words, SSA(CO2)
and Ash are indirectly anticorrelated.
2.4. Interactive web-tool

The interactive web application Biochar Engineering (available
at: http://spark.rstudio.com/veromora/BiocharEng/) was built to
implement the GLMs constructed in this study into a user-friendly
tool, which requires no prior knowledge of advanced statistics or
programming language. It is accessible free of charge through a
web browser as a stand-alone application hosted by Shiny-RStudio.
The primary intention of the tool is to maximize the utility of the
models herein developed so that anyone can use them to obtain
a statistical outlook for expected physical and chemical properties
of biochar from user-defined production values. As is demonstrat-
ed in examples to follow, the tool can be used to make informed
decisions of the optimum selection of parent biomass type and
peak pyrolysis temperature that is required to produce biochars
with tailored physical and chemical properties.
3. Results and discussion

3.1. Correlation matrix and networks

Related biochar properties identified from the correlation
matrix (Fig. 1) were used to build a network representation of
the 22 responses included in this study (Fig. 2). From the generated
networks, three groups of interdependent biochar properties were
distinguished and five individual properties found to be indepen-
dent (i.e., the correlation coefficient between any pair of properties
was jrj < 0:75). As illustrated in Fig. 2, the first correlated group
includes Fe, Yield, Ash, Ca, C, FixedC, and SSA(CO2), which contains
a mixture of positively and negatively correlated pairs. The second
group includes EC, Na, P, K, Mg, Mn, Zn, and S, which contains all
positive correlations (linked by solid edges). The third group
includes C:N and pHw, which are negatively correlated (linked by
dashed edges). The five independent properties are represented
as edge-free nodes and include BulkD, SSA(N2), N, MatVol, and
CEC. Interestingly, SSA(N2) and CEC were found to have mostly
very weak and insignificant relationships with all other biochar
properties (jrj 6 0:53 with p-value P 0.01 and jrj 6 0:44 with p-
value P 0.001, respectively). The exception for CEC is its relation-
ship with BulkD, which is significant albeit still weak (jrj ¼ 0:58
with p-value < 0.001). As a result, SSA(N2) and CEC could be con-
sidered the two most independent biochar properties, which are
the least likely to be affected when other properties are modified.
It is noted that Principal Component Analysis (analyzed with SPSS
v.21) was initially explored to find clusters of biochar properties.
However, the meta-data contained too many samples that were
not characterized in full, thus producing an incomplete matrix that
required the omission of a vast number of samples or of entire
response variables from the analysis. As these omissions were con-
sidered to affect the results excessively, a correlation matrix and
network approach was adopted being considered less biased by
missing data.

The networks of correlated properties provide an overview of
which combinations of biochar properties are more likely to occur
in a given sample. The correlation networks prove very useful as a
tool for qualitative design of biochar samples with desired proper-
ties. For example, a hypothetically desirable biochar might be
needed to neutralize soil acidity (high pHw), return lost macronu-
trients P and S that were removed during harvest (high P and S),
prevent excess atrazine from leaching into the groundwater (high
SSA(CO2) and/or high Ash), and maximize the amount of biochar
produced by pyrolysis (high Yield). Using the network diagram of
Fig. 2, it is possible for example to infer the following. A biochar
sample engineered for high pHw will not affect the other desired
properties, given that pHw is in a separate network to all other
properties of interest. The addition of macronutrient P will con-
comitantly supply S, as these properties belong to the same
positively correlated network. The remaining three properties
belong to the same network from which we extrapolate that a sin-
gle sample of biochar has a negative tradeoff between high
SSA(CO2) and high Ash,1 meaning that it is less probable that a sam-
ple will have both high SSA(CO2) and high Ash. Yield will be reduced
if the sample is prioritized for high SSA(CO2) and (indirectly) maxi-
mized when high Ash content is favored. Networks obtained from
different correlation coefficient thresholds can be created in the

http://spark.rstudio.com/veromora/BiocharEng/


Table 3
Summary of ‘‘best’’ models selected for each biochar characteristic.

Response Formula Transformation Link GOF

BulkD B + B:T Box-Cox Transf identity U

SSA(N2) B + B:T – identity
SSA(CO2) B:T – identity U

Yield B + B:T Log Transf log U

EC B + B:T Box-Cox Transf log U

CEC B + B:T Log Transf log U

pHw B + T – identity U

Ash B + T Box-Cox Transf identity U

MatVol F + F:T - identity U

C B + B:T – indentity U

N B + B:T – identity
C:N B + T Box-Cox Transf identity U

FixedC B:T – identity U

P B + B:T Box-Cox Transf log U

S B Log Transf identity U

Ca B + B:T Log Transf identity U

K B + B:T Box-Cox Transf identity U

Mg B + T Log Transf identity U

Na B + T Log Transf log U

Fe B + T Log Transf log
Mn B + T Log Transf identity U

Zn B + T Log Transf log U
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web-tool as displayed in the Networks tab and interpreted in the
fashion described above. Increasing the correlation coefficient
threshold will simply result in the removal of weak connections
from the final graphic, while decreasing it will result in the display
of more connections.

3.2. Generalized Linear Models

In this section the versatility of GLMs as an extended linear
regression approach is leveraged to model the biochar system.
The candidate GLMs are compared against one another and the
most appropriate models for each biochar property selected. Lastly,
the ‘‘best’’ models are evaluated for goodness-of-fit.

3.2.1. GLM candidates
As indicated in the methods section, selection of the ‘‘best’’

model is a two-step process. First, the list of candidates is reduced
to three. To do so, candidate models belonging to each of the three
data transformation groups (untransformed, Log transformed and
Box-Cox transformed) are ranked according to their AIC score.
Top scoring models for each group are those with the lowest AIC
value, and are reported in tables for each biochar property in Sec-
tion II of the Supplementary data. The tables summarize the top
candidate model for each data transformation group, where details
of the model are reported concerning: formula, type of data trans-
formation used, link function, AIC, p-value for the SW test, as well
as d and p-value for the DW test. Second, diagnostic plots are gen-
erated for the reduced candidate list, and the overall ‘‘best’’ model
is selected according to their relative performance in SW and DW
tests and diagnostic plot criteria. Diagnostic plots of the overall
‘‘best’’ model are included in the same section of the Supplemen-
tary data, and noted by a star in the table.

Model selection required a certain level of flexibility, as very
few candidate models met all evaluating criteria. This is a common
feature of real data sets of a limited size. Model performance in the
SW test was relatively poor, since candidate GLMs of 15 of the bio-
char properties failed SW for all types of data transformation. Nev-
ertheless, candidate GLMs of the remaining biochar properties
consistently satisfied this criterion for the overall ‘‘best’’ model.
Performance in DW was useful in quantitatively evaluating the
assumption for uncorrelated residuals, but not to differentiate
the candidate GLMs against each other because often all candidates
satisfied or failed this criterion. Diagnostic plots, on the other hand,
were much more insightful in illustrating the suitability and rela-
tive performance of the models, and were given more consid-
eration during ‘‘best’’ model selection.

In general, all four diagnostic plots corresponding to one candi-
date model performed well above the other two, and demonstrated
that the goodness-of-fit (GOF) assumptions were satisfactorily
met. For certain biochar properties two candidate models pro-
duced diagnostic plots of similar performance, in which case the
model corresponding to the simpler data transformation was given
preference; that is, untransformed is simpler than Log transformed,
which is simpler than Box-Cox transformed. In the case of Na, for
example, diagnostic plots for Log and Box-Cox transformation
GLMs showed a nearly identical model improvement (see
Figs. A.15 and A.16), and all three candidate models performed
the same for SW and DW (see Table A.16). Consequently, the Log
transformed model was selected as the ‘‘best’’ model. The models
for Fe, N, and SSA(N2) were difficult to select given the pronounced
heterogeneity in variance and heavy deviation from the theoretical
Normal Quantile–Quantile distribution across all candidate models
(see Figs. A.8, A.14 and A.21). These three models were therefore
considered to violate too many GOF criteria to be recommended
for use with confidence; the situation would improve with addi-
tional data. Irrespective of that, the large proportion of properties
found to be properly described by the corresponding ‘‘best’’ model
clearly demonstrates the feasibility of reverse engineering multiple
biochar properties simultaneously. We note that initial analysis
with fewer samples comprising the meta-data resulted in the
selection of ‘‘best’’ models with satisfactory GOF criteria that were
very similar to those chosen from the larger data set (presented in
Table 3). This indicates that replication of suitable results (i.e.,
those that comply with GOF standards) from different studies are
consistent.

Table 3 summarizes the ‘‘best’’ models chosen for all biochar
properties, where the last column indicates whether the model
complies with GOF standards. The Maximum Likelihood Estimates
(MLEs) of the ‘‘best’’ model coefficients for each biochar property
are reported in Section III of the Supplementary data and can be
requested from the web-tool in the Stats tab.

3.2.2. ‘‘Best’’ GLMs
The formulas of the ‘‘best’’ models (column 2 in Table 3) indi-

cate that for the vast majority of cases it is imperative to have
information about both starting biomass and peak pyrolysis tem-
perature to properly define the relationship between biochar prop-
erties and production variables. In the simplest case a single
predictor variable statistically dominates. We find that this only
occurs for S, which depends entirely on B, while T is not statistically
significant (as shown in Fig. 3A). No response variable was found to
depend exclusively on T. The next level of complexity is that in
which the response depends on both B and T, but the two factors
do not interact (Bþ T). This occurs for pHw, Ash, C:N, and most
micronutrients. In this type of relationship, B affects the response,
but the rate at which T has an influence is the same across all types
of B (illustrated in Fig. 3B). The following level of complexity is that
in which there is a significant interaction between B and T, but no
main effect of B (B : T), as in the case for SSA(CO2) and FixedC. A
general trend in this type of relationship is that the rate of change
in the response with the increase in T is different for the different B,
whereas the intercept is the same (as shown in Fig. 3C). Finally, the
most complex relationship is given by the full model (B + B:T or
F + F:T). In this model, both intercept and temperature regression
slope are significantly different for the different B (or F). The rela-
tionships for BulkD, SSA(N2), Yield, EC, CEC, MatVol, C, N, P, Ca, and
K fall into this category. In this case, changes in B (or F) and T are
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not trivial, as the relationship permits the greatest level of flexibil-
ity and rules out any general trends (as in Fig. 3D).

For the three simplest relationships (B, B + T, and B:T), a
change in B does not affect the response order relative to the
other types of B. Conversely, for the most complex relationship
(B + B:T or F + F:T), a change in biomass affects the response in
such a way that it crosses over responses from other biomass
types as T changes; thereby not necessarily maintaining the rela-
tive order among the different types of biomass. This assessment
of multiple predictor variable influence corroborates the percep-
tion that biochar properties are deeply shaped by the collective
effect of both production variables, whether additive and/or
interactive. Furthermore, it warrants against statistical bias that
is introduced when biochar production decisions are based on
the dominance of a single variable on a biochar property of
interest. Interestingly, only the ‘‘best’’ model for MatVol favored
the nested starting biomass, F. All other ‘‘best’’ models per-
formed better when this information was entered in its more
detailed form, B.

The frequency in response variable transformation for the
selected ‘‘best’’ models (column 3 in Table 3) indicates that a min-
ority of the data are Normally distributed and meet the constant
variance assumption. Most responses require power-transforma-
tion to stabilize their variance. Specifically, 7 response variables
were satisfactorily modeled without transformation of the respon-
se values, while 9 others needed Log transformation and the
remaining 6 required the more advanced Box-Cox transformation.
This observation draws attention to the fact that non-constant
variance is ubiquitous in the characteristics of biochar, which
Fig. 3. Formula interpretation for GLMs of link identity. (A) Res
requires transformation of the response variable to comply with
Normality assumptions. Depictions of different functional shapes
are presented in Fig. 4 for models sharing the same formula
(B + T) and identity link. In this figure, (A) is the reference for the
untransformed response for pHw, (B) is the Log transformed
response for Mn, and (C) is the Box-Cox transformed response for
Ash. In these plots, it is evident that the untransformed data have
a perfectly linear relationship. In contrast, Log and Box-Cox trans-
formations are suitable to describe non-linear behavior associated
with a more cumbersome relationship between biochar properties
and production variables.

Similarly, the prevalence of non-linear link functions in the
‘‘best’’ model population (column 4 in Table 3) exposes the com-
mon violation of the linearity assumption. It is interesting that
all 7 responses that demonstrated constant variance (i.e., not
requiring data transformation) also met the linearity assumption
(favoring identity link function). This was also the case for 8 of
the responses with unequal variances that required data transfor-
mation. The remaining 7 responses required transformation to
address variance instability and the log link function to further
correct for non-linearity. The log link function contributes to the
non-linear function shape of the response in a way that resembles
that of Log and Box-Cox data transformation. Fig. 4 illustrates this
effect for responses that have been Log transformed. The data in (B)
satisfies the linearity assumption and is adequately modeled with
the identity link function. In contrast, the property in (D) needs a
log link function to adjust for non-linearity. In short, both non-
Gaussian and non-linear features were found to be ubiquitous in
the biochar system.
p � B. (B) Resp � B + T. (C) Resp � B:T. (D) Resp � B + B:T.



Fig. 4. Data transformation interpretation for GLMs of link identity and Formula B + T. (A) Untransformed. (B) Log transformed. (C) Box-Cox transformed. (D) Log transformed
of link log.
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3.3. Biochar Engineering: the web-tool

The Biochar Engineering tool is an integrated calculator for the
biochar models in Table 3. The web-tool can be navigated through
the various tabs on display at the top of the page. The About tab
introduces the tool, the Graphic and Table tabs contain the model
results, the Stats tab summarizes individual model parameters,
and the Networks tab displays networks of correlated biochar prop-
erties. The side bar panel is always visible and can be modified at
any time to re-run the model with new input variable values for
biomass, peak temperature, and confidence coefficient, request
the statistical summary of a specific response model, set a correla-
tion coefficient cutoff for the networks, and download the output
of any tab. The model output for the user-defined production vari-
ables is automatically generated and updated in the Graphic and
Table tabs. Correlation networks are similarly updated in the Net-
works tab for newly defined correlation coefficients. Ultimately,
this information can be used to select production variable values
that yield biochar with the most desirable set of properties for
the user, thereby facilitating the possibility to efficiently engineer
biochar resources to meet multiple agricultural demands.
3.4. Using GLMs and web-tool to engineer a biochar

Recommendations for the use of the GLMs in Table 3 cannot be
generalized because they depend on the particular set of properties
needed from biochar to mitigate deficiencies in a specific soil or
crop, as well as on the type of biomass available and limitations
of the pyrolysis unit. Rather than attempting to examine all possi-
ble scenarios, this section presents two examples that demonstrate
how the GLMs and the web-tool can be used to engineer the hypo-
thetical biochar described in Section 3.1 (requiring high pHw, high
P and S, high SSA(CO2) and/or high Ash, and high Yield). In the first
example we assume a situation where all production variables can
be modified, and identify the optimum combination of starting
biomass and temperature that return the desired qualities. In the
second example we assume a situation where the type of starting
biomass is fixed (e.g., to concurrently dispose of a byproduct from
another process), and determine the temperature that is most suit-
able to obtain the desired qualities.
3.4.1. A worked example for total optimization of production variables
In the case where all production variables can be modified, we

propose to refer to the prediction plots corresponding to the
properties of interest. Prediction plots for all properties analyzed
in this study are included in Figs. A.24–A.45 of the Supplementary
data; see the particular case for pHw in Fig. 5. To facilitate inter-
pretation of the model results, the predictive plots are presented
as composite figures where each subfigure corresponds to a
unique type of starting biomass and the property of interest
is plotted as a function of pyrolysis temperature. The predicted
(mean) values are presented as a solid line, while regions



Fig. 5. Model predictions for pHw content (solid line) with confidence intervals for 75%, 85%, and 95% (dark gray, gray, light gray shading, respectively). Data points from
meta-data are overlain (solid circles).
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corresponding to 75%, 85%, and 95% confidence intervals are
indicated by the shaded regions (dark gray, gray, light gray,
respectively). For reference, the data points from the meta-data
are overlaid as solid circles.

We begin by analyzing Fig. 5 to identify the variables that can
deliver biochar with high pHw. This figure shows that as T increases
pHw increases, and this rate is constant across all B. Among the dif-
ferent types of B included in the pHw model, biochars made from
poultry litter would typically result in the highest achievable
pHw at any T, followed by digested dairy manure, corn, food waste,
and paper waste. Next, we analyze the predictive plot for P
(Fig. A.38). From this figure it is apparent that most Bs result in bio-
chars with low P concentrations that are minimally variable with
T; crossovers associated with the B:T coupling are mainly observed
on the low T range. Notably, samples made from poultry litter con-
tain the highest concentration of P (by orders of magnitude greater
than samples of lowest P), with food waste and digested dairy
manure following significantly behind in P concentration. Then,
we examine the predictive plot for S (Fig. A.40), which is exclusive-
ly dependent on B (in agreement with the ‘‘best’’ model formula for
S in Table 3). It is easy to distinguish that poultry litter has the
highest S content, followed by digested dairy manure and dairy
manure. Next, we consider predictions for SSA(CO2) (Fig. A.41),
which also show a general increase in response with T at rates that
depend on B (cf. formula B:T for the ‘‘best’’ SSA(CO2) model). From
these predictions we identify that hazelnut, pine and oak produce
the highest possible SSA(CO2), which is enhanced as T is increased.
Conversely, the predictive plot for Ash (Fig. A.24) indicates that this
property is typically around 30% and generally increases with T.
Paper waste, poultry litter and food waste are ranked highest
among the B types to show high ash at all T levels. Lastly, the pre-
dictive plot for Yield (Fig. A.44) demonstrates a pronouncedly
decreasing trend with increasing T for all B types, with crossovers
throughout, as expected from the ‘‘best’’ model formula B + B:T
given in Table 3 for Yield. It is evident that biochars from paper
waste and poultry litter produce the highest yield for the range
of T investigated.

Based on the above observations, we conclude that poultry lit-
ter pyrolyzed at T above 500 �C will return a biochar that meets
most of the needed hypothetical properties. More concrete recom-
mendations of T will depend on the producer’s choice to compro-
mise between Ash and Yield, which have opposing trends with T.
One way to facilitate this decision is to refer to the predictions
made by the Biochar Engineering web-tool at various temperatures.
By specifying in the side bar panel the biomass (poultry), peak tem-
perature (a value in the range 500–600 �C), and a satisfactory con-
fidence coefficient (e.g., 0.8), the web-tool automatically generates
a table (located in the Table tab) that summarizes the expected bio-
char properties for the input variables. For discrete temperatures at
500, 550, and 600 �C, the biochar would be expected to have an Ash
content of 56.60%, 61.31%, and 66.4%, and Yield of 65.76%, 64.38%,
and 63.03%, respectively. Considering that Ash is increased by 10%
and Yield is only reduced by 2% when T is increased from 500 to
600 �C, one might accept the small penalty in yield for gaining
more ash. Assuming all other considerations are satisfactory in this
hypothetical scenario, one could conclude that the customized bio-
char with the above listed characteristics is best produced by
pyrolyzing poultry litter at 600 �C. For a comprehensive outlook
on the expected range of all 22 physico-chemical properties, the
user may refer to the output generated in the Graphic or Table tabs



Fig. 6. Interface of the Biochar Engineering tool. Model output compiled in the Table tab.

V.L. Morales et al. / Bioresource Technology 183 (2015) 163–174 173
of the web-tool, and save the results with the download buttons for
future reference.
3.4.2. A worked example for restrictions in starting biomass
A similar approach to that followed in the first example can be

used to engineer a biochar for cases in which the type of biomass is
fixed. Take for instance a corn farm, which is interested in selling
its corn stover resources as high quality biochar because livestock
feed and bioenergy prices are low. The properties required from
the biochar, as specified by the client, are assumed to be the same
as those for the hypothetical biochar considered above. In this case,
the farmer or pyrolysis contractor would be referred to the web-
tool directly. In the side bar panel, the biomass should be set to
corn and a suitable confidence coefficient selected (e.g., 0.8). The
peak temperature slider can then be used to study the changes in
biochar properties with temperature, as the only production vari-
able that can be adjusted. The model output results can be moni-
tored in either the Graphic tab (bar plots indicate predicted
values with error bars marking the confidence interval range) or
in the Table tab (table summary of predicted values with their cor-
responding standard error and confidence interval). By shifting the
peak temperature slider from low to high temperatures it is evi-
dent that Yield is diminished, SSA(CO2), pHw, Ash, and P are inten-
sified, and S remains constant. Assuming in addition to the
required biochar properties that in order to make a profit, the Yield
should be at least 30%, we can conclude that the corn stover should
be pyrolyzed at 467 �C, so the lower end of the expected yield
range is above 30%. The Table tab of the web-tool (see screenshot
in Fig. 6) summarizes the expected value and confidence interval
for each biochar property, according to the production variables
specified. For corn pyrolyzed at 467 �C, the estimated range (with
80% confidence level) for the desired properties is: 8.6–9.9 pHw,
1647–2214 Total (mg/kg) P, and 633.1–869.9 Total (mg/kg) S,
330.6–450.6 m2/g SSA(CO2), 11.8–16.2% Ash, and 30.0–33.1% Yield.

4. Conclusion

Statistical results demonstrate that arbitrary choices of starting
biomass or peak pyrolysis temperature are unlikely to produce bio-
char with prescribed physico-chemical properties. Generalized Lin-
ear Models were used to quantify the combined effect that starting
biomass and peak temperature has on different biochar properties.
These properties are typically non-Gaussian and exhibit non-linear
dependence on the two predictor variables. Proper description of
most biochar properties by GLMs demonstrates the feasibility to
engineer biochar. A web-application of the GLMs together with
correlation networks are offered as tools to guide biochar
engineering.
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